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Abstract—MapReduce is a popular choice for executing an-
alytic workloads over large datasets on clusters of commod-
ity machines. Due to the distributed nature of such systems,
network resource bottlenecks can adversely affect performance,
especially when multiple applications share the network. One
of the significant barriers to reducing the occurrence and
impact of such bottlenecks is the current separation between
MapReduce and network management and routing. Fortunately,
the emergence of software-defined networking (SDN) is removing
the barriers to cooperation between Hadoop and the network.
To explore the opportunity this creates, we focus on how we
can use the capabilities of SDN to create a more collaborative
relationship between MapReduce and the network underneath.
We demonstrate the effectiveness of this collaboration through
the implementation of and experiments with a system we call
Cormorant. Experimental results show up to 38% improvement
for analytic query performance, beyond the benefits achievable
by independently optimizing MapReduce schedulers and network
flow schedulers.

I. INTRODUCTION

Running analytic queries on large, diverse, and ever-growing

datasets, so-called big data processing, has become an essential

part of business processes for enterprises. MapReduce [4]

(and Hadoop as the open source version of MapReduce) has

emerged as a framework for processing large amounts of

structured and unstructured data in parallel across a large

number of machines, in a reliable and fault-tolerant manner.

However, due to the distributed nature of the framework, the

network bandwidth resource has always been a scarce resource

that limits the MapReduce’s performance [2]. Moreover, this

problem becomes even more challenging if the network is

shared with other applications as well [8].

One cause of the problem is the current separation between

the decisions MapReduce and networking make with respect

to resource allocation. MapReduce does not explicitly monitor

the underlying network status, nor does it try to modify its

activities due to this status. Similarly, the networking layer

This work was done at NEC Labs America.

does not base its resource allocation based on any insight into

the specific expected behavior of a MapReduce task. As a

result, when the network is shared with other applications, it

simply tries to deliver its network service to all applications

equally. In this paper we explore the issue of whether or

not higher performance can be obtained by changing the

fundamental relationship between MapReduce and network

routing by exploiting the cooperative capabilities offered by

software-defined networking (SDN) [6], [7]. We focus on

MapReduce workloads generated by Hive as representative of

a widely used approach to executing decision support queries

over large data sets.

Data center applications initiate connections between a

diverse range of hosts and can require significant aggregate

bandwidth. Data center topologies often implement a multi-

rooted tree with higher-speed links but decreasing aggregate

bandwidth moving up the hierarchy1. These multi-rooted trees

have many paths between all pairs of hosts. A key challenge

is to simultaneously and dynamically forward flows along

these paths to minimize or reduce link oversubscription and

to deliver acceptable aggregate bandwidth. Unfortunately, ex-

isting network forwarding protocols are optimized to select a

single path for each source/destination pair in the absence of

failures. Such static single-path forwarding can significantly

underutilize multi-rooted trees. The state of the art forwarding

in data center environments uses ECMP [5] (Equal Cost

Multipath) to statically stripe flows across available paths

using flow hashing. This static mapping of flows to paths does

not account for either current network utilization or individual

flow size.

Recently, Hedera [2] has been proposed as a dynamic

flow scheduling system for generic workloads in data centers

with multi-rooted tree topologies. Hedera is a substantial

improvement over the network status and flow size oblivious

1Cisco Data Center Infrastructure 2.5 Design Guide.
www.cisco.com/univercd/cc/td/doc/solution/dcidg21.pdf.
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ECMP algorithm. In view of this, we have chosen Hedera as

our flow scheduler and use it in our experiments.

However, Hedera only goes part of the way to collaborative,

network-aware scheduling between task managers and flow

schedulers. That is, Hedera is invoked after the tasks have

already been selected, and seeks to schedule and route the

resulting flows given that the tasks selected are fixed. In

this work we aim to discover if completing the transition

is effective – that is, if an even tighter integration between

the task manager and the flow scheduler can yield better

performance.

Another important general idea in reducing the impact of

bandwidth limitations in Map Reduce computations is to place

jobs “close to” their data, thus reducing the amount of data

that must be transferred. A relevant piece of work along these

lines is Mantri [3]. Mantri can yield much better performance

than location-oblivious placement of tasks; in view of this,

we have implemented Mantri as our task scheduler. However,

while Mantri impacts the flows that a particular application

will generate, it does not manage those flows, nor does it

monitor or react to the status of the network. As such, Mantri

is also complementary to our work.

Thus, the main goal of this paper is to explore the following:

given that we are using a state-of-the-art flow scheduling

algorithm (Hedera) and a state-of-the-art task-placement al-

gorithm (Mantri), is there still room for further improvement

by exploiting the capabilities of software-defined networking

(SDN) to establish a collaborative relationship between a

system executing decision support queries over Hadoop and

the network providing the communication below? We provide

an initial answer of “yes” and also lay the groundwork for

future follow-on work exploring this question.

Leveraging SDN for better performance of analytical

queries was also considered in [9]. However, the scenarios

considered in [9] are limited to traditional relational query

processing, while our work focuses on MapReduce systems.

One important difference is that in relational systems, query

processing and the storage management are tightly coupled,

whereas in Hadoop-based systems they are managed sepa-

rately (MapReduce processing and HDFS file system). This

separation calls for different management and optimization

techniques for task and flow scheduling, which we study in

this work.

Our contributions: In this paper, we propose Cormorant,

a Hadoop-based query processing system built on top of

collaborative software-defined networking. Different from the

previous work, our work aims at building a collaborative

relationship between MapReduce and networking. MapReduce

optimizes task schedules based on the information provided by

software-defined networking and software-defined networking

guarantees the exact schedule to be executed. To the best of

our knowledge, this is the first paper to analyze and show

the power and opportunities of collaborative software-defined

networking for a MapReduce system. It is our hope that

this will open up a rich area of research and technology

development in distributed data intensive computing.

Our specific contributions over the existing work are the

following:

(1) We present a method that enables task scheduler in

Hadoop to obtain current network status to improve the task

scheduling.

(2) We present a flow scheduler to dynamically change the

physical flow path following Hadoop’s requirements. More-

over, we make the task scheduler work with the flow scheduler

collaboratively.

(3) We have implemented all of the techniques in Hadoop

running on a “real” software-defined networking with Open-

Flow enabled switches. Our experimental results show that

Cormorant can effectively reduce the overhead incurred by

network congestion and achieve 14-38% improvement for

TPC-H query execution. The benefits of collaboration go

beyond simply adding up the benefits of a work-alone task

scheduler and a work-alone flow scheduler from prior work.

II. BACKGROUND

In this section, we give a brief background on some com-

ponents to help presentation of the methods in the sequel.

A. Apache Hadoop

We use the standard Apache Hadoop distribution as the basis

for the implementation of the system. We use HiveQL as the

high level query language to express the database queries. A

HiveQL query is translated into MapReduce jobs to run on

Hadoop. For each MapReduce job, the Hadoop Distributed

File System (HDFS) handles the reading/writing of the job’s

input/output data. A MapReduce job is generally composed

of several map tasks (mappers) and reduce tasks (reducers).

For each mapper, it reads a chunk of input data from HDFS,

applies the map function to extract key, value pairs, then

shuffles these data items to partitions that correspond to

different reducers, and finally sorts the data items in each

partition by the key. For each reducer, when it has collected all

of the map output, it will perform a merge to produce all key,

value pairs in sorted order of the key. As the merge proceeds,

the reducer applies the reduce function to each group of values

that share the same key, and writes the reduce output back to

HDFS.

B. Multi-rooted tree network topologies

Today’s data centers could consist of thousands of con-

nected servers. The recent research advocates multi-rooted tree

topologies [1], where there are a larger number of parallel

paths between any given source and destination edge switches.

One rational for the existence of multiple paths is to achieve

fault tolerance.

For example, Figure 1 shows three layers of switches, i.e.,

edge layer, aggregation layer, and the core layer. The edge

layer switches directly connect to the servers. We can see that

there are a larger number of parallel paths between any given

source and destination edge switches. Note that, although

10Gb links are used in the aggregation layer and the core layer,

which are more powerful than 1Gb links in the edge layer, it
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is currently very hard to achieve full bisection bandwidth due

to the high oversubscription factor [1].

C. Software-defined networking and OpenFlow

SDN is an approach to networking that decouples the

control plane from the data plane. The control plane is

responsible for making decisions about where traffic is sent

and the data plane forwards traffic to the selected destination.

This separation allows network administrators and application

programs to manage network services through abstraction of

lower level functionality by using software APIs [7]. From the

Hadoop point of view, the abstraction and the control APIs

allow it to (1) monitor the current status and performance of

the network, and (2) modify the network with directives, for

example, setting the forwarding path for non-local tasks.

OpenFlow is a standard communication interface among the

layers of an SDN architecture, which can be thought of an

enabler for SDN [6]. An OpenFlow controller communicates

with an OpenFlow switch. An OpenFlow switch maintains a

flow table, with each entry defining a flow as a certain set of

packets by matching on 10 tuple packet information.

When a new flow arrives, according to OpenFlow protocol,

a “PacketIn” message is sent from the switch to the controller.

The first packet of the flow is delivered to the controller. The

controller looks into the 10 tuple packet information, deter-

mines the egress port (the exiting port) and sends “FlowMod”

message to the switch to modify a switch flow table. When

an existing flow times out, according to OpenFlow protocol, a

“FlowRemoved” message is delivered from the switch to the

controller to indicate that a flow has been removed.

For example, we show a 4-port OpenFlow switch SE0

serving as an edge switch in Figure 2. Two nodes N0,1 are
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Fig. 3. Cormorant system architecture

connected to SE0 at ports 0,1 and two aggregation switches

SA0 and SA1 are connected to the switch at ports 2,3,

respectively. There is a receiver and a transmitter behind each

port of the switch. When a new flow Flow0(from N0 to N2)

arrives, a “PacketIn” message is sent from the switch SE0 to

the controller. The controller looks into the 10 tuple packet in-

formation, determines the egress port and sends a “FlowMod”

message to the switch to modify a switch flow table. The

following packets in the same flow will be sent through the

same egress port. Because there are two aggregation switches,

i.e., two paths from N0 to N2, the OpenFlow controller can

have two options to determine the egress port. That is, the

egress port can be 1 or 2, which means the flow can go through

the aggregation switch SA0 or the aggregation switch SA1.

III. CORMORANT DESIGN

In this section, we describe the system that we designed and

implemented to evaluate the promise of SDN for improved

Hadoop MapReduce query processing.

A. System architecture

Figure 3 shows the overall system architecture. The system

is mainly comprised of Hadoop (with Master/NameNode and

Slave/DataNode servers deployed in separate nodes), a net-

work information manager, and an OpenFlow controller.

The basic operation of the system is as follows: The

OpenFlow controller collects all the flow information from

all the OpenFlow switches and generates a snapshot of current

network status at a constant interval regularly. This information

is stored at the Network Information Manager (NIM) and can

be shared by the task scheduler, the replica scheduler and the

flow scheduler. When Hive receives a query, it translates the

query into several map reduce jobs and submits the jobs to the

Hadoop master. Based on the network status snapshot, the task

scheduler at the master node assigns tasks to different slaves;

the replica scheduler at each slave node selects replicas; and

the flow scheduler schedules the flows. After all the jobs finish,

the query results are returned to the user.

Table I lists the notations for the rest of the paper.
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TABLE I
NOTATIONS

Cap port capacity (1Gbps in our setting)

N a physical node

Flow a network flow defined by 10 tuples

Flow a set of all the flows

PFlow a random variable that denotes a path for Flow

PFlow a sample space of all candidate paths for Flow

pFlow a physical path in a sample space PFlow

A(pFlow) available bandwidth of path pFlow

t ∈ Task a task in a task set

B. Network Information Manager (NIM)

The NIM updates and inquires about the information on the

current network state by communicating with the OpenFlow

controller. The network information includes the network

topology, queues, links, and their capabilities. It is important

to keep this information up-to-date as inconsistency could lead

to under-utilization of network resources as well as bad query

performance. The NIM maintains a network status snapshot by

collecting traffic information from OpenFlow switches. When

a scheduler sends an inquiry to the NIM to inquire A(pFlow),
it will return the current available bandwidth of the flow by

finding out the hop along the whole path that has the minimum

available bandwidth (bottleneck).

Besides inquiring A(pFlow), i.e., the available bandwidth

for Flow with a specific path pFlow, the schedulers can also

inquire a list of candidate paths. In this case, the NIM can

select the best path that has the maximum A(pFlow). Based

on the best path information, the OpenFlow controller can send

a “FlowMod” message to the switch to modify the switch flow

table to add the best path.

C. Task/Replica scheduler

We follow the basic idea for task scheduler proposed in

Mantri [3], i.e., placing a task close to its data. Compared with

the default task scheduler which uses the static node-local,

rack-local, and non-local tags, the improved tasks scheduler

uses real-time global network status information for all the

tasks. It greedily selects a task with the most available

bandwidth from the data node to the taskTracker. Note that

we assume that more available bandwidth may make the task

finish faster and this approach is only “local” optimal for this

task but may not be “global” optimal for all the tasks.

We apply Algorithm 1 for task sets. It picks the one that

has the maximum available bandwidth (line 9). Finally, it

compares the maximum available bandwidth with a threshold

(a configurable system parameter). It will return the task if

the maximum available bandwidth is more than the threshold

and return no task if the maximum available bandwidth is

less than the threshold (which means there is serious network

congestion and/or there is no available slots and it may

be better to postpone executing this task until the situation

improves).

There is one key parameter P in Algorithm 1, which denotes

an “abstract” path from Nd to Nc. It is called an “abstract”

Algorithm 1: Select task from a task set

1 Input: taskTracker at node Nc which is asking the master for a task
to execute. task set Task;

2 Output: the task texec ∈ Task to be executed;
3 Max = −infinity; texec = null;
4 for t ∈ Task do
5 NodeSet Datanode=t.getSplitLocations();
6 for Nd ∈ Datanode do
7 Path P = new Path(Nd, Nc);
8 if A(P ) > Max then

9 Max = A(P ); texec = t;
10 end

11 end
12 end
13 if Max > Threshold then

14 Return texec;
15 end
16 else

17 Return null;
18 end

path because it is defined from a “MapReduce” point of view,

which is different from a physical path that is defined from a

“Network” point of view. We use a discrete random variable

P to denote an abstract path and use p to denote a physical

path. We use P = {p1, p2, ..., pn} to denote the sample space

of all the n candidate physical paths. A(P ) is calculated as

the average of the available bandwidth of all the n candidate

physical paths.

When a task is actually executed, which replicas to choose

is determined by the slave. This means the replica scheduler

work independently with task scheduler which could cause

inconsistency. So we also modified the source code of HDFS

to make them work collaboratively. When a taskTracker needs

to read a chuck, it also selects the replica that has the most

available bandwidth to the taskTracker.

D. Flow scheduler

We follow the flow scheduler design in Hedera [2], i.e., the

scheduler aims to assign flows to nonconflicting paths.When

a new flow arrives at one of the edge switches, according

to OpenFlow protocol, a “PacketIn” message is sent from

the switch to the controller. The first packet of the flow is

delivered to the controller. The controller then chooses a path

whose available bandwidth can best accommodate this flow

and schedule the flow to that path. Note that, we again assume

that more available bandwidth will make the flow run faster

and this approach is only “local” optimal for this flow but may

not be “global” optimal for all the flows.

E. Collaborative schedulers

We described three improved schedulers in the previous

three subsections. However, they may not be able to deliver the

best optimized performance if they work separately as opposed

to working collaboratively as shown below. (1) Task/replica

scheduler only. Although we select a task with the most

available bandwidth from the data node to the taskTracker,

the most available bandwidth is not guaranteed at run-time if

the task scheduler does not work collaboratively with a flow

57



Fig. 4. Collaborative relationship among schedulers

scheduler. (2) Flow scheduler only. If none of the candidate

paths has enough available bandwidth due to neighbor traffic,

the flow scheduler will not have good choice and the scheduled

task may be executed slow.

In order to improve this, we build the collaborative sched-

ulers as shown in Figure 4. (1) Network status snapshot is

built by leveraging SDN. (2) The collaborative task scheduler

chooses the best task with the most available bandwidth based

on the network status and Algorithms 1. A(P ) is calculated

as the maximum available bandwidth of all the n candidate

physical paths. (3) The replica scheduler will choose the

replica accordingly. (4) The flow scheduler leverages the path

configuration handler and schedules the physical path that has

the maximum available bandwidth which corresponds to the

task scheduler’s choice.

Note that, collaborative schedulers are not simply putting

the improved task/replica/flow schedulers all together. For

example, in the improved task scheduler, A(P ) is calculated

as the average because the scheduler is uncertain about the

physical path. However A(P ) is calculated as the maximum in

the collaborative one because the collaborative task scheduler

is sure about the physical path.

IV. EXPERIMENTAL EVALUATION

A. Experimental Setup

Our test bed as shown in Figure 5 consists of 17 physical

nodes N0−16. Each of the machines has an Intel Xeon E5-

2440 2.4GHz Hexa-Core CPU, 32GB of RAM, 1TB 7200rpm

disk running Linux with kernel 2.6.32. Six of the machines

N10−15 are installed with a 4-port Gigabit NetFPGA card

and perform as OpenFlow switches. Seven of the machines

N0−3,5−7 are used for Hadoop MapReduce deployment with

one master (at N0) and six slaves (at N1−3,5−7). N0 and N4

are also used for generating neighbor network traffic. N8, N9

and N16 are used to run network information manager(NIM),

Openflow Controller, and client emulator, respectively.

We run Hadoop MapReduce 1.2.1 and follow most of

the default settings. We use Hive 0.11 and run an OLAP

benchmark TPC-H with a scaling factor of 100.

We use nodes N0 and N4 to create 12 neighbor contention

flows emulated by iperf 2. Fi→j denotes a flow from node

2http://iperf.sourceforge.net/
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Ni to node Nj . We have 4 large flows F3→0, F7→4 , F0→2

and F4→6 with 800Mbps and 8 small flows with 50Mbps.

Each experiment is run three times and the average (with the

standard deviation if applicable) is reported. In Section IV-B,

we first summarize all TPC-H queries’ performance under 5

different scenarios as shown in Table II, i.e., default (default

Hadoop), task/replica scheduler only, flow scheduler only,

collaborative and no traffic (default Hadoop without any

neighbor traffic).

TABLE II
SCHEDULERS USED IN DIFFERENT SCENARIOS

Scenarios Task Scheduler Flow Scheduler Traffic

default default ECMP yes

task/rep. sched. improved ECMP yes

flow sched. default improved yes

collaborative collaborative collaborative yes

no traffic default ECMP no

B. Summary of TPC-H queries’ performance

In this section, we discuss the experimental results for all

TPC-H queries (Q1-Q22) as shown in Figure 7. The y-axis

is the query execution time and x-axis shows 5 different

scenarios for each query. Besides the other default settings

of Hadoop, we set the number of replica as 1, the chunk size

as 512MB, the number of map slots as 3 and the number of

reduce slots as 3. The neighbor network traffic is medium, i.e.,

45% network bandwidth utilization.

We summarize and compare the whole TPC-H benchmark

execution time in Figure 6 and we enumerate all the details of

each query execution time in Figure 7. We have the following

observations: (1) Figure 6 shows that it takes on average

17757s, 16043s, 16090s, 13756s and 11191s for default,

task/replica scheduler only, flow scheduler only, collaborative

and no traffic scenarios. Although the performance is reduced

when task/replica scheduler or flow scheduler is used, the ben-

efit is quite limited (less than 10%). When all the schedulers

work collaboratively, we can achieve benefits (22.5%) beyond

simply adding up their own benefits. Since the execution time

58



 0

 500

 1000

 1500

 2000

 2500

 3000

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

Q
ue

ry
 e

xe
cu

tio
n 

tim
e 

(s
)

Comparison of query execution time under different schedulers
Default

Task/Replica scheduler only
Flow scheduler only

Collaborative
No Traffic

Fig. 7. Details of TPC-H benchmark query execution time

 0

 5000

 10000

 15000

 20000

     

B
en

ch
m

ar
k 

E
xe

cu
tio

n 
T

im
e 

(s
)

Comparison of the whole TPC-H benchmark execution time 
 under different schedulers

Default
Task/Replica scheduler only

Flow scheduler only
Collaborative

No Traffic

Fig. 6. Comparison of the whole TPC-H benchmark execution time

of no traffic scenario is 11191s, ideally we can improve the

performance by at most 37%. In another word, Cormorant

reduces 60% of the overhead brought by network traffic. (2)

From Figure 7, we can see that, for different queries, different

improvement is achieved. But the query execution time for

every query is reduced when we use task/replica scheduler or

flow scheduler alone. Across all of the benchmark queries, the

collaborative case is always delivering the best performance.

V. CONCLUSIONS

In this paper, we propose Cormorant, a Hadoop-based sys-

tem with collaborative software-defined networking for execut-

ing analytic queries. Unlike previous work, in which Hadoop

works independently from the network underneath, our system

enables Hadoop and the networking layer to work together

to improve network utilization and reduce query execution

times. As our experiments with an implementation show, this

improvement goes beyond that achievable by the state of the

art approach of combining optimizing task schedulers and flow

schedulers without collaboration. We believe that our work

shows early promise for achieving one of the often-cited goals

of SDN, i.e., tightly integrating applications with the network

to improve performance

Of course, substantial room for future work exists. For

example, it might be possible to generate an optimal network

bandwidth schedule for all tasks (not just those from a single

application) a priori. Then a collaborative flow scheduler could

enforce this optimal schedule. Also, there are new systems,

such as Spark [10], that primarily use main memory storage

rather than disk storage. It would be interesting to explore the

performance improvements achievable by exploiting SDN in

such an environment.
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